Imbedding compact Riemann surfaces in 3-space
نویسندگان
چکیده
منابع مشابه
Introduction to Compact Riemann Surfaces
The theory of Riemann surfaces is a classical field of mathematics where geometry and analysis play equally important roles. The purpose of these notes is to present some basic facts of this theory to make this book more self contained. In particular we will deal with classical descriptions of Riemann surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic functions, theta fun...
متن کاملNon-abelian vortices on compact Riemann surfaces
We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field φ with values on the n × n matrices. It is known that when these equations are defined on a compact Riemann surface Σ, their moduli space of solutions is closely related to a moduli space of τ -stable holomorphic n-pairs on that surface. Using this fact and a local factorization result for the matrix φ, we show t...
متن کاملIsometry Groups of Compact Riemann Surfaces
We explore the structure of compact Riemann surfaces by studying their isometry groups. First we give two constructions due to Accola [1] showing that for all g ≥ 2, there are Riemann surfaces of genus g that admit isometry groups of at least some minimal size. Then we prove a theorem of Hurwitz giving an upper bound on the size of any isometry group acting on any Riemann surface of genus g ≥ 2...
متن کاملRelative entropy for compact Riemann surfaces
The relative entropy of the massive free bosonic field theory is studied on various compact Riemann surfaces as a universal quantity with physical significance, in particular, for gravitational phenomena. The exact expression for the sphere is obtained, as well as its asymptotic series for large mass and its Taylor series for small mass. One can also derive exact expressions for the torus but n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1961
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1961.11.1035